File:ScythianC14AsiaEuropeFig6SketchEn 3dGraph.gif|thumb +Search for Videos

Other uses
Anatomy
Thumb
pollex
digitus I manus
digitus primus manus

The Thumb on a left hand.

X | Mute
X | Mute
Bones of the thumb, visible at left.
300
Princeps pollicis artery+
Dorsal venous network of hand+
Dorsal digital nerves of radial nerve+, proper palmar digital nerves of median nerve+
Infraclavicular lymph nodes+
Thumb
A01.378.800.667.430.705
p_27
12655361


The '''thumb''' is the first finger+ of the hand+. When a person is standing in the medical anatomical position+ (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thumb is pollex+ (compare ''hallux+'' for big toe), and the corresponding adjective for thumb is pollical+.


The English word "finger" has two senses, even in the context of appendages of a single typical human hand:
# Any of the five digits.
# Any of the five terminal members of the hand, especially those other than the thumb.

Linguistically, it appears that the original sense was the broader of these two: ''penkwe-ros'' (also rendered as ''penqrós'') was, in the inferred Proto-Indo-European language+, a suffixed form of ''penkwe'' (or ''penqe''), which has given rise to many Indo-European+-family words (tens of them defined in English dictionaries) that involve or flow from concepts of fiveness.

The thumb shares the following with each of the other four fingers:
* Having a skeleton of phalanges+, joined by hinge-like joints that provide flexion toward the palm of the hand
* Having a "back" surface that features hair and a nail, and a hairless palm-of-the-hand side with fingerprint+ ridges instead

The thumb contrasts with each of the other four by being the only digit that:
* Is opposable to the other four fingers
* Has two phalanges rather than three
* Has greater breadth in the distal+ phalanx than in the proximal+ phalanx
* Is attached to such a mobile metacarpus+ (which produces most of the opposability)
and hence the etymology of the word: "tum" is Proto-Indo-European for "swelling" (cf "tumour" and "thigh") since the thumb is the stoutest of the fingers.

In humans, opposition and apposition are two movements unique to the thumb, but these words are not
Primatologists and hand research pioneers J. Napier+ and P. Napier+ defined opposition as: "A movement by which the pulp surface of the thumb is placed squarely in contact with - or diametrically opposite to - the terminal pads of one or all of the remaining digits." For this ''true'', pulp-to-pulp opposition to be possible, the thumb must rotate about its long axis (at the carpometacarpal joint+). Arguably, this definition was chosen to underline what is unique to the human thumb.

Anatomists and other researchers focused exclusively on human anatomy, on the other hand, tend to elaborate this definition in various ways and, consequently, there are hundreds of definitions. Some anatomists restrict ''opposition'' to when the thumb is approximated to the fifth digit (little finger) and refer to other approximations between the thumb and other digits as ''apposition''.
Other researchers use another definition, referring to opposition-apposition as the transition between flexion-abduction and extension-adduction; the ''side'' of the distal thumb phalanx thus approximated to the palm or the hand's radial side (side of index finger) during ''apposition'' and the ''pulp'' or "palmar" side of the distal thumb phalanx approximated to either the palm or other digits during ''opposition''.

Moving a limb back to its neutral position is called reposition and a rotary movement is referred to as circumduction+.


The skeleton of the thumb consists of the first metacarpal bone+ which articulates proximal+ly with the carpus+ at the carpometacarpal joint+ and distal+ly with the proximal phalanx+ at the metacarpophalangeal joint+. This latter bone articulates with the distal phalanx+ at the interphalangeal joint+. Additionally, there are two sesamoid bone+s at the metacarpophalangeal joint.

The muscles of the thumb can be compared to guy-wire+s supporting a flagpole; tension from these muscular guy-wires must be provided in all directions to maintain stability in the articulated column formed by the bones of the thumb. Because this stability is actively maintained by muscles rather than by articular constraints, most muscles attached to the thumb tend to be active during most thumb motions.

The muscles acting on the thumb can be divided into two groups: The extrinsic hand muscles, with their muscle bellies located in the forearm, and the intrinsic hand muscles, with their muscles bellies located in the hand proper.
A ventral forearm muscle, the flexor pollicis longus+ (FPL) originates on the anterior side of the radius+ distal to the radial tuberosity+ and from the interosseous membrane+. It passes through the carpal tunnel+ in a separate tendon sheath+, after which it lies between the heads of the flexor pollicis brevis. It finally attaches onto the base of the distal phalanx of the thumb. It is innervated by the anterior interosseus branch+ of the median nerve+ (C7-C8)

Three dorsal forearm muscles act on the thumb:

The abductor pollicis longus+ (APL) originates on the dorsal sides of both the ulna+ and the radius, and from the interosseous membrane. Passing through the first tendon compartment, it inserts to the base of the first metacarpal bone+. A part of the tendon reaches the trapezium, while another fuses with the tendons of the extensor pollicis brevis and the abductor pollicis brevis. Except for abducting the hand, it flexes the hand towards the palm and abducts it radially. It is innervated by the deep branch of the radial nerve+ (C7-C8).

The extensor pollicis longus+ (EPL) originates on the dorsal side of the ulna and the interosseous membrane. Passing through the third tendon compartment, it is inserted onto the base of the distal phalanx of the thumb. It uses the dorsal tubercle on the lower extremity of the radius as a fulcrum+ to extend the thumb and also dorsiflexes and abducts the hand at the wrist. It is innervated by the deep branch of the radial nerve+ (C7-C8).

The extensor pollicis brevis+ (EPB) originates on the ulna distal to the abductor pollicis longus, from the interosseus membrane, and from the dorsal side of the radius. Passing through the first tendon compartment together with the abductor pollicis longus, it is attached to the base of the proximal phalanx of the thumb. It extends the thumb and, because of its close relationship to the long abductor, also abducts the thumb. It is innervated by the deep branch of the radial nerve+ (C7-T1).

The tendons of the extensor pollicis longus and extensor pollicis brevis form what is known as the anatomical snuff box+ (an indentation on the lateral aspect of the thumb at its base) The radial artery can be palpated anteriorly at the wrist(not in the snuffbox).

There are three thenar muscles+:

The abductor pollicis brevis+ (APB) originates on the scaphoid tubercle+ and the flexor retinaculum+. It inserts to the radial sesamoid bone and the proximal phalanx of the thumb. It is innervated by the median nerve+ (C8-T1).

The flexor pollicis brevis+ (FPB) has two heads. The superficial head arises on the flexor retinaculum, while the deep head originates on three carpal bones: the trapezium+, trapezoid+, and capitate+. The muscle is inserted onto the radial sesamoid bone of the metacarpophalangeal joint. It acts to flex, adduct, and abduct the thumb, and is therefore also able to oppose the thumb. The superficial head is innervated by the median nerve+, while the deep head is innervated by the ulnar nerve+ (C8-T1).

The opponens pollicis+ originates on the tubercle of the trapezium and the flexor retinaculum. It is inserted onto the radial side of the first metacarpal. It opposes the thumb and assists in adduction. It is innervated by the median nerve+.

Other muscles involved are:

The adductor pollicis+ also has two heads. The transversal head originates along the entire third metacarpal bone, while the oblique head originates on the carpal bones proximal to the third metacarpal. The muscle is inserted onto the ulnar sesamoid bone of the metacarpophalangeal joint. It adducts the thumb, and assists in opposition and flexion. It is innervated by the deep branch of the ulnar nerve+ (C8-T1).

The first dorsal interosseous+, one of the central muscles of the hand, extends from the base of the thumb metacarpal to the radial side of the proximal phalanx of the index finger.


There is a variation in the angle between the first, second phalanges+ of the thumb of humans, varying between 0° and almost 90° when the thumb is extended in a "thumbs-up+". It has been suggested that the variation is an autosomal recessive trait+, called a "Hitchhiker's thumb", with homozygous+ carriers having an angle close to 90°. However this has been disputed, as the variation in thumb angle is continuous and shows little evidence of the bi-modality+ seen in recessive traits.

Malformations of the thumb include a triphalangeal thumb+ and polydactyly+.

One of the earlier significant contributors to the study of hand grips was orthopedic primatologist and paleoanthropologist John Napier+, who proposed organizing the movements of the hand by their anatomical basis as opposed to work done earlier that had only used arbitrary classification. Most of this early work on hand grips had a pragmatic basis as it was intended to narrowly define compensable injuries to the hand, which required an understanding of the anatomical basis of hand movement. Napier proposed two primary prehensile+ grips: the ''precision grip'' and the ''power grip''. The precision and power grip are defined by the position of the thumb and fingers where:
* The '''power grip''' is when the fingers (and sometimes palm) clamp down on an object with the thumb making counter pressure. Examples of the power grip are gripping a hammer, opening a jar using ''both your palm and fingers'', and during pullups.
* The '''precision grip''' is when the intermediate and distal phalanges ("fingertips") and the thumb press against each other. Examples of a precision grip are writing with a pencil, opening a jar ''with the fingertips alone'', and gripping a ball (only if the ball is not tight against the palm).


Opposability of the thumb should not be confused with a precision grip as some animals possess semi-opposable thumbs yet are known to have extensive precision grips (Tufted Capuchins+ for example). Nevertheless, precision grips are usually only found in higher apes, and only in degrees significantly more restricted than in humans.

The pad-to-pad pinch between the thumb and index finger is made possible because of the human ability to passively hyperextend the distal phalanx+ of the index finger. Most non-human primates have to flex their long fingers in order for the small thumb to reach them.

In humans, the distal pads are wider than in other primates because the soft tissues of the finger tip are attached to a horseshoe-shaped edge on the underlying bone, and, in the grasping hand, the distal pads can therefore conform to uneven surfaces while pressure is distributed more evenly in the finger tips. The distal pad of the human thumb is divided into a proximal and a distal compartment, the former more deformable than the latter, which allows the thumb pad to mold around an object.

A primitive autonomization of the first carpometacarpal joint+ (CMC) may have occurred in dinosaurs. A real differentiation appeared perhaps 70 mya in early primates, while the shape of the human thumb CMC finally appears about 5 mya. The result of this evolutionary process is a human CMC joint positioned at 80° of pronation, 40 of abduction, and 50° of flexion in relation to an axis passing through the second and third CMC joints.

Opposable thumbs are shared by many primate+s, including most simian+s, and some prosimian+s. The climbing and suspensory behaviour in orthograde+ apes, such as chimpanzee+s, has resulted in elongated hands while the thumb has remained short. As a result, these primates are unable to perform the pad-to-pad grip associated with opposability. However, in pronograde+ monkeys such as baboon+s, an adaptation to a terrestrial lifestyle has led to reduced digit length and thus hand proportions similar to those of humans. Consequently, these primates have dexterous hands and are able to grasp objects using a pad-to-pad grip. It can thus be difficult to identify hand adaptations to manipulation-related tasks based solely on thumb proportions.

The evolution of the fully opposable thumb is usually associated with ''Homo habilis+'', a forerunner of ''Homo sapiens+''. This, however, is the suggested result of evolution from ''Homo erectus+'' (around 1 mya+) via a series of intermediate anthropoid+ stages, and is therefore a much more complicated link.

It is possible, though, that a more likely scenario may be that the specialized precision gripping hand (equipped with opposable thumb) of ''Homo habilis+'' preceded walking, with the specialized adaptation of the spine, pelvis, and lower extremities preceding a more advanced hand. And, it is logical that a conservative, highly functional adaptation be followed by a series of more complex ones that complement it. With ''Homo habilis+'', an advanced grasping-capable hand was accompanied by facultative bipedalism+, possibly implying, assuming a co-opted evolutionary relationship exists, that the latter resulted from the former as obligate bipedalism was yet to follow. Walking may have been a by-product of busy hands and not vice versa.

HACNS1+ (also known as Human Accelerated Region+ 2) is a gene enhancer+ "that may have contributed to the evolution of the uniquely opposable human thumb, and possibly also modifications in the ankle+ or foot+ that allow humans to walk+ on two legs". Evidence to date shows that of the 110,000 gene enhancer sequences identified in the human genome+, HACNS1 has undergone the most change during the human evolution+ since the chimpanzee-human last common ancestor+.


Many non-human animals also have some kind of opposable thumb or toe. An animal species is said to have ''opposable thumbs'' if the thumb is capable of bending in such a way that it can touch all the other digits on the hand or foot. Most species do not have opposable thumbs. Opposable thumbs are a signature feature of the primate+ family, and played a large role in the ancient humans' invention and use of tool+s.

* Primate+s fall into one of four groups:
** Nonopposable thumbs: tarsier+s and marmoset+s
** Pseudo-opposable thumbs: all strepsirrhine+s and Cebidae+
** Opposable thumbs: Old World monkey+s and all great ape+s
** Opposable with comparatively long thumbs: gibbon+s (or lesser apes)

The thumb is not opposable in all primates — some primates, such as the spider monkey+ and colobus+, are virtually thumbless. The spider monkey compensates for this by using the hairless part of its long, prehensile tail for grabbing objects. In ape+s and Old World monkeys+, the thumbs can be rotated around its axis, but the extensive area of contact between the pulps of the thumb and index finger is a human characteristic.

''Darwinius masillae+'', an Eocene+ primate fossil often described as a missing link between prosimian+ and simian+, had hands and feet with highly flexible digits featuring opposable thumbs and halluces.

* Giant Panda+s — five clawed fingers plus an extra-long sesamoid bone+ beside the true first digit that, though not a true digit, works like an opposable thumb.
* In some ''Muridae+'' the hallux is clawless and fully opposable, including arboreal+ species such as ''Hapalomys+'', ''Chiropodomys+'', ''Vandeleuria+'', and ''Chiromyscus+''; and saltatorial+, bipedal species such as ''Notomys+'' and possibly some Gerbillinae+.
* The East African maned rat+ (''Lophiomys imhausi''), an arboreal, porcupine-like rodent, has four digits on its hands and feet and a partially opposable thumb.
Additionally, in many polydactyl cats+, both the innermost and outermost ("pinky+") toes may become opposable, allowing the cat to perform more complex tasks.

* In most phalangerid+ marsupial+s (a family of possum+s) except species ''Trichosurus+'' and ''Wyulda+'' the first and second digits of the forefoot are opposable to the other three. In the hind foot, the first toe is clawless but opposable and provides firm grip on branches. The second and third toes are partly syndactylous+, united by skin at the top joint while the two separate nails serve as hair combs. The fourth and fifth digits are the largest of the hind foot.
* Similar to phalangerids though in a different order, koala+s have five digits on their fore and hind feet with sharp curved claws except for the first digit of the hind foot. The first and second digits of the forefeet are opposable to the other three, which enables the koala to grip smaller branches and search for fresh leaves in the outer canopy. Similar to the phalangerids, the second and third digits of the hind foot are fused but have separate claws.
* Opossum+s are New World marsupials with opposable thumbs in the hind feet giving these animals their characteristic grasping capability (with the exception of the Water Opossum+, the webbed feet of which restrict opposability).
* The mouse-like microbiotheres+ were a group of South American marsupials most closely related to Australian marsupials. The only extant member, ''Dromiciops gliroides+'', is not closely related to opossums but has paws similar to these animals, each having opposable toes adapted for gripping.

* The bird-like dinosaur ''Troodon+'' had a partially opposable finger. It is possible that this adaptation was used to better manipulate ground objects or moving undergrowth branches when searching for prey.
* The small, predatory dinosaur ''Bambiraptor+'' may have had mutually opposable first and third fingers and a forelimb maneouverability that would allow the hand to reach its mouth. Its forelimb morphology and range of motion enabled two-handed prehension, one-handed clutching of objects to the chest, and use of the hand as a hook.
* ''Nqwebasaurus+'' — a coelurosaur+ with a long, three-fingered hand which included a partially opposable thumb (a "killer claw").

In addition to these, some other dinosaurs may have had partially or completely opposed digits in order to manipulate food and/or grasp prey.

* Most bird+s have at least one opposable digit on the foot, in various configurations+, but these are seldom called "thumbs". They are more often known simply as hallux+es.

* ''Phyllomedusa+'', a genus of frogs native to South America.

* Prehensility+
* Thumbs signal+




: journal harv
Almécija S. Moyà-Solà S. Alba D. M.
Early Origin for Human-Like Precision Grasping: A Comparative Study of Pollical Distal Phalanges in Fossil Hominins
PLoS ONE 5 7 e11727 2010
10.1371/journal.pone.0011727 20661444 2908684
2010PLoSO...511727A

: book harv 2007
Ankel-Simons Friderun
Primate Anatomy
Chapter 8: Postcranial Skeleton
345 3rd
Academic Press 0-12-372576-3

: book harv
Austin Noelle M.
Joint Structure and Function: A Comprehensive Analysis 4th
Chapter 9: The Wrist and Hand Complex
Pamela K. Levangie
Cynthia C. Norkin
F. A. Davis Company Philadelphia
0-8036-1191-9 2005

: book harv
Brown David P.
Freeman Eric D.
Cuccurullo Sara
Freeman Ted L.
Cuccurullo Sara
Physical Medicine and Rehabilitation Board Review
Upper Extremities—Hand Region: Range of Motion of the Digits
Demos Medical Publishing 2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=physmedrehab&part=A4492#A4530
1-888799-45-5
(NCBI+)
: book harv 1999
Brunelli Giovanni R.
Brüser Peter
Gilbert Alain
Finger bone and joint injuries Stability in the first carpometacarpal joint
Taylor and Francis 1-85317-690-7
http://books.google.com/books?id=-pzGRMvXFzAC&pg=PA167

: journal 10.1002/ajp.1350310402 harv 1993
Byrne R.W.
Byrne J.M.E.
Complex Leaf-Gathering Skills of Mountain Gorillas (Gorilla g. beringei): Variability and Standardization
American Journal of Primatology 31 4 241
John Wiley and Sons http://www.st-andrews.ac.uk/~www_sp/people/personal/rwb/publications/1993%20Byrne_Byrne_AJP.pdf
0275-2565

: journal harv
Christel Marianne I.
Kitzel Stefanie
Niemitz Carsten |authorlink3=Carsten Niemitz
How Precisely do Bonobos (Pan paniscus) Grasp Small Objects?
International Journal of Primatology 19 1 165–194
30 November 2004
http://www.springerlink.com/content/w06281n1m71n7418/
10.1023/A:1020319313219

: journal harv
Costello Michael B.
Fragaszy Dorothy M.
Prehension in Cebus and Saimiri: I. Grip type and hand preference
American Journal of Primatology 15 3 235–245
Wiley-Liss March 1988
http://www3.interscience.wiley.com/cgi-bin/fulltext/110487513/PDFSTART
10.1002/ajp.1350150306

: journal harv
de Klerk W.J.
Forster C.A.
Sampson S.D.
Chinsamy A.
Ross, C.F.
A new coelurosaurian dinosaur from the Early Cretaceous of South Africa
Journal of Vertebrate Paleontology 2000 20 2 324–332
http://rosslab.uchicago.edu/publications/De%20Klerk%20et%20al.%202000.pdf

: book harv
Ellerman John Reeves
The families and genera of living rodents. Vol. II. Family Muridae
British Museum (Natural History) 1941 London
http://archive.org/stream/familiesgeneraof02elle#page/2/mode/2up/search/Lophiomyidae

: journal harv
Franzen JL
Gingerich PD
Habersetzer J
Hurum JH
von Koenigswald, W, ''et al.''
Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology
PLoS ONE 2009 4 5 e5723
10.1371/journal.pone.0005723 Hawks John

: journal harv
Harcourt-Smith W E H
Aiello L C
Fossils, feet and the evolution of human bipedal locomotion
J Anat
Journal of anatomy |pmid=15198703 |pmc=1571304 |doi=10.1111/j.0021-8782.2004.00296.x |url=http://www3.interscience.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0021-8782&date=2004&volume=204&issue=5&spage=403

: journal 10.1016/S0021-9290(08)70148-9 harv
| last=Hsu | first=Ar-Tyan
| coauthors=Meng-Tsu Hu, Fong Ching Su
| title=Effect of Gender, Flexibility and Thumb Type on Thumb Tip Generation
| journal=Journal of Biomechanics | date=July 2008 | volume=41 | issue=Supplement 1 | pages=S148
| url=http://www.jbiomech.com/article/S0021-9290%2808%2970148-9/abstract

: book harv
Jones Lynette A.
Lederman Susan J.
Human hand function
Oxford University Press US 2006
9780195173154

: journal harv
Leakey LSB Louis Leakey
Tobias PV Phillip V. Tobias
Napier JR John Napier (primatologist)
A New Species of Genus Homo from Olduvai Gorge
Nature 4 202 7–9
http://purple.niagara.edu/wje/Bio121/Leaky%201964%20habilis.pdf
14166722 | doi=10.1038/202007a0
1964Natur.202....7L
: book harv 1942
McBride Earl Duwain
Disability evaluation: principles of treatment of compensable injuries
Lippincott 631
http://books.google.com/books?id=YIpgQgAACAAJ

: book harv
McDade Melissa C.
Grzimek’s animal life encyclopedia: Volumes 12–16, Mammals I–V 2nd
Koalas (''Phascolartidae'')
Hutchins Michael
Kleiman Devra G.
Geist | editor3-first =Valerius
McDade Melissa C.
Farmington Hills, MI Gale Group 2003

: journal 10.1073/pnas.96.1.313 harv
Moyà-Solà Salvador 15136
Köhler Meike 9874815
Rook Lorenzo
Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus
PNAS January 5, 1999 96 1 313–317
http://www.pnas.org/content/96/1/313.full.pdf
1999PNAS...96..313M
: journal harv
Napier John Russell
The prehensile movements of the human hand 13376678
J Bone Joint Surg Br 38 4 902–913
November 1956
http://www.bjj.boneandjoint.org.uk/content/38-B/4/902.full.pdf

: book harv
Nowak Ronald M.
Walker's mammals of the world, Volume 2 6th
JHU Press 1999
978-0-8018-5789-8
http://books.google.com/books?id=T37sFCl43E8C&pg=PA89

: book harv 2004
Platzer Werner
Color Atlas of Human Anatomy, Vol. 1: Locomotor System
Thieme 3-13-533305-1 5th

: journal harv
Senter Phil
Comparison of forelimb function between ''Deinonychus'' and ''Bambiraptor'' (Theropoda: Dromaeosauridae)
Journal of Vertebrate Paleontology 2006 26 4 897–906
10.1671/0272-4634(2006)26[897:COFFBD]2.0.CO;2

: journal harv 1946
Slocum D.B.
Pratt D.R.
Disability Evaluation for the Hand
Journal of Bone and Joint Surgery 28 491
http://www.ejbjs.org/cgi/reprint/28/3/491.pdf

: journal harv
van Nierop Onno A.
van der Helm Aadjan
Overbeeke Kees J.
Djajadiningrat Tom J.P.
A natural human hand model
Visual Comput 24 2008 24 31–44
10.1007/s00371-007-0176-x
http://www.ece.uvic.ca/~btill/papers/mocap/vanNierop_etal_2008.pdf

: journal harv |date=January 2003
Young Richard W.
Evolution of the human hand: the role of throwing and clubbing
Journal of Anatomy 202 1 165–174
12587931
| pmc=1571064
10.1046/j.1469-7580.2003.00144.x

Refend:




human anatomical features: